The generator matrix

 1  0  0  0  0  0  1  1  1  1  0  0  X  1  1  1  1  1  1  1  1  X  1  1  1  0  X  0  X  X  0  1  1  0  1  X  0  0  1  1  1  1  1  1  0  X  1  1  X  1  1  X  1  1  0  1  1  0  1  1  1  X  X  1  1  1  0  1  1  0  X  0  X  1
 0  1  0  0  0  0  X  X  1  1  1  1  X X+1 X+1  1 X+1  X X+1  0  X  1  0  0 X+1  X  1  1  X  1  X X+1 X+1  X  0  1  X  1  1  0  0  0  0  X  X  X  0 X+1  X  X  1  1  1 X+1  0  1  1  0  1  1  1  1  0  X  X  0  1 X+1  X  1  X  0  X  X
 0  0  1  0  0  0  0  0  0  0  0  X  X  X  0  0  0  X  0  X  X  X  X  X  0  X  0  0  0  0  1  1  1  1  1 X+1  1 X+1  1 X+1  1 X+1 X+1 X+1  1  1 X+1  1  1 X+1 X+1  X X+1 X+1  1  1  X  X X+1  X  X  1  0  1  1 X+1  1  0  X  0  0  X  0  X
 0  0  0  1  0  0  0  0  0  X  X  X  X  0  0 X+1 X+1 X+1  1 X+1 X+1  1  1  0 X+1  1 X+1 X+1  1  1 X+1 X+1  X  X X+1  0  1  X  1  0  0  X  0  1  X  0 X+1  X  0 X+1 X+1 X+1  X  X  X  0  1  X  0  1  1 X+1  0  0  1  0 X+1  X  X  X  X  1  1 X+1
 0  0  0  0  1  0  0 X+1  X X+1  X  1  1 X+1  X  X  0 X+1  1  0  1  0  0  1  1  1 X+1  1  X  X  1  X  0 X+1 X+1  0  0  1  X  1  1  0  X  0  1  X  X  1 X+1  X  1  0  1  0  0  0  0  1  X  X X+1  0  1  X  1 X+1  0 X+1  0  0  X  1  1 X+1
 0  0  0  0  0  1  1 X+1  1  0  1  1 X+1  1  X X+1  X  0  0  1 X+1  1  0  X X+1  1  X  1  1  X  0  0  1  X  0 X+1  X  0 X+1  0 X+1  0 X+1  0 X+1 X+1  X  X  0  1 X+1  1  1  X  1  1  X  X  X  X  0  0  1  1  X  1  X  X  X  X  1 X+1 X+1 X+1

generates a code of length 74 over Z2[X]/(X^2) who�s minimum homogenous weight is 64.

Homogenous weight enumerator: w(x)=1x^0+145x^64+374x^66+464x^68+450x^70+511x^72+464x^74+424x^76+354x^78+320x^80+232x^82+196x^84+92x^86+47x^88+18x^90+4x^92

The gray image is a linear code over GF(2) with n=148, k=12 and d=64.
This code was found by Heurico 1.16 in 2.67 seconds.